R
Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem
00 [e]e] 0000000000000 0000000 00000000 00000000
:
:

Data and Algorithm Analysis
Chapter 2 — Getting Started

Thang Hoang

Department of Computer Science, Virginia Tech

o = = E DA
:

Data and Algorithm Analysis Chapter 2 — Getting Started 1/42
00

Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem
00 [e]e] 0000000000000 0000000 00000000 00000000
:
:
Administration
Introduction

Sorting — Insertion Sort
Sorting — MergeSort

Traveling Salesperson Problem

[m] = =
:
Data and Algorithm Analysis

DA

Chapter 2 — Getting Started 2/42

Administration Introduction Sorting — Insertion Sort

0 [e]e] 0000000000000 0000000
:
:

Table of Contents

Sorting — MergeSort
00000000

Traveling Salesperson Problem
00000000

Administration

(=] = = QA
:
Data and Algorithm Analysis Chapter 2 — Getting Started 3/42
00

Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem
oe 00 00000000000000000000 00000000 00000000
:

Administrative Details

» Syllabus

» Textbook: Introduction to Algorithms (Fourth Edition), by
Cormen, Leiserson, Rivest, and Stein

> Website: hitps://thanghoang.github.io/teaching/f23/cs4104/
» Canvas

» Website
» Office hours

o F

D¢
:

Data and Algorithm Analysis Chapter 2 — Getting Started 4/42

https://thanghoang.github.io/teaching/f23/cs4104/

Administration Introduction
o °0

Sorting — Insertion Sort
0000000000000 0000000

Table of Contents

Sorting — MergeSort
00000000

Traveling Salesperson Problem
00000000

Introduction

(=] = = QA
:
Data and Algorithm Analysis Chapter 2 — Getting Started 5/42
00

Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem
oe 00000000000000000000 00000000 00000000

Overview

» Use frameworks for describing and analyzing algorithms.

» Examine two sorting algorithms: insertion sort and merge
sort.

> Learn how to present an algorithm with pseudocode.
» Understand asymptotic notation for running-time analysis.
» Learn “divide and conquer” technique with merge sort.

[m] = =
;

Data and Algorithm Analysis Chapter 2 — Getting Started 6/42

Administration Introduction
[}

Sorting — Insertion Sort
©0000000000000000000

Table of Contents

Sorting — MergeSort
00000000

Traveling Salesperson Problem
00000000

Sorting — Insertion Sort

o = = 1PN G4
:
Data and Algorithm Analysis Chapter 2 — Getting Started 7/42
00

Administration
00

Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem
| 0®000000000000000000 00000000 00000000
Algorithms Solve Problems
Design Analyze i
Problem P » Algorithm A > Time
Complexity T
Relation Prove

Evaluate
R Correctness
/ S

Asymptotic
A Solves P Analysis
0,Q,0
Instances Solutions
RCIx S

Data and Algorithm Analysis

[m] = =
Chapter 2 — Getting Started

8/42

Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem
00 00®00000000000000000 00000000 00000000
:

Example — Sorting as a Formal Problem

SORTING

Input: Sequence ay, a», ..., a, of integers.

Output: A permutation by, bo, ..., b, of a;, ao,

9 an
such that

b1§b2§"'§bn—1§bn-

» For convenience of discussion, we often assume that the

integers in the instance are distinct, though that is not
strictly necessary.

= &
:
Data and Algorithm Analysis Chapter 2 — Getting Started

9/42
s

Sorting — Insertion Sort
0000000000000 0000000

Example — Sorting
An input of SORTING as an array A[1 : n]:

Alll ARl A8l Al4] Al A6l Al7]

Al8]

57 23 31 100 4 18 44

92

The output of SORTING as an array B[1 : n]:

B1] Bl2] B3] B[4] B[5] B6] B[7]

Bl8]

4 18 23 31 44 57 92

100

We will now design algorithms to solve SORTING.

Data and Algorithm Analysis Chapter 2 — Getting Started

10/42

Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem
0000®000000000000000 00000000 00000000

Insertion Sort — A Simple Sorting Algorithm

Main idea is to build up a sorted array in place as follows:
» Proceed through A[1 : n] iteratively from left to right.
» Always maintain a sorted subarray on the left of A[i].

> At A[/], find the right place to insert A[/] into the sorted
subarray to its left.

» In the process, move larger integers to the right.

[m] = - J)QC
: :
Data and Algorithm Analysis Chapter 2 — Getting Started 11/42

Administration Introduction Sorting — Insertion Sort
00

0000080000000 0000000

Sorting — MergeSort
00000000

Erg\éeolig%gglesperson Problem
lllustrating the lIdea Behind Insertion Sort

A[i] = key is the next integer to be inserted into the sorted
subarray to its left.

Al DAY A+1] L A —1] Alll Ali+1] ... Aln]
< key > key key | Unexamined
Sorted Subarray A[1 : i — 1]

We now express the INSERTION-SORT algorithm in
pseudocode.

o
:
Data and Algorithm Analysis

o _
Chapter 2 — Getting Started

12/42

Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem
00 000000@0000000000000 00000000 00000000
: :

CLRS Pseudocode

» Emphasis on human readability and comprehension
Indentation for logical structure

Keywords: if/else/elseif, while, for,
repeat/until, return

Assignment: =

Comment: //

Lines numbered for reference purposes
Flexible semantics

vy

vvvyYyypy

o P = D¢
: :

Data and Algorithm Analysis Chapter 2 — Getting Started 13/42

Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem
0000000@000000000000 00000000 00000000

Pseudocode for INSERTION SORT

INSERTION-SORT(A, n)

1 /I A[1: n]is an array of integers.

2 /I Returns a permutation of A in nondecreasing order.
3 fori=2ton

4 key = A[i]

5 Il Insert A[i] into the sorted subarray A[1 : i —1].
6 j=i-1

7 while j > 0 and A[j] > key

8 A+ 1] = AJj]

9 j=j—1

10 A[j + 1] = key

11 return A

it
)
€

[m] = =
: :
Data and Algorithm Analysis Chapter 2 — Getting Started 14/42

Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem
00000000800000000000 00000000 00000000

Algorithm Design Paradigms

Incremental — INSERTION SORT

Divide and conquer — MERGESORT — recursive
Dynamic programming — Chapter 14

Greedy — Chapter 15

Randomized algorithms — Chapters 5 and 7

Exhaustive search — an approach, later, for the
TRAVELING SALESPERSON PROBLEM

vVvyVvyVvyYyy

[m] = -)
: :
Data and Algorithm Analysis Chapter 2 — Getting Started 15/42

Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem
00000000080000000000 00000000 00000000

Insertion Sort — Correctness

Loop invariant: At the start of iteration i of the for loop (lines
3-10), the subarray A[1 : i — 1] is a sorted version of the
original subarray A[1:i—1].

» Initialization: True before / = 2.

» Maintenance: True after loop body for i.

» Termination: Loop terminates with the array sorted when

i=n+1.

We conclude that the for loop actually sorts A.

:
Data and Algorithm Analysis Chapter 2 — Getting Started 16/42

Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem
00000000008000000000 00000000 00000000

INSERTION SORT — Verify Loop Invariant

INSERTION-SORT(A, n)

1 /I A[1: n]is an array of integers.

2 /I Returns a permutation of A in nondecreasing order.
3 fori=2ton Il A[1: i — 1] is already sorted

4 key = Ali]

5 Il Insert A[i] into the sorted subarray A[1 : i —1].
6 j=i-1

7 while j > 0 and A[j] > key

8 A+ 1] = AJj]

9 j=j-1

10 Alj + 1] = key

11 return A

it
9
€

[m] = =
: :
Data and Algorithm Analysis Chapter 2 — Getting Started 17/42

Administration

Introduction Sorting — Insertion Sort

Sorting — MergeSort Traveling Salesperson Problem
00000000000 e00000000 00000000 00000000
:

Insertion Sort — Time Complexity Analysis

The final task is analyzing the time complexity of
INSERTION-SORT.

This takes some discussion on analysis of algorithms, which is
next.

=] 5
|

DA
Data and Algorithm Analysis

:
Chapter 2 — Getting Started 18/42
00

Administration
00

Introduction

Sorting — Insertion Sort
000000000000 0000000

Sorting — MergeSort
00000000

Analysis of Algorithms

Traveling Salesperson Problem
00000000

» Why analyze?

» Why not just code the algorithm, run it, and time it?
> Analysis tells you how long the code takes to run on
different settings, inputs, or programming language.
» Random-Access Machine (RAM) model
» What to analyze in an algorithm?
» Time complexity

> Worst case

> Average case

» Space complexity

o
:
Data and Algorithm Analysis

o _
Chapter 2 — Getting Started

Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem
0000000000000 @000000 00000000 00000000

Worst Case Time Complexity

For algorithm A, the worst case time complexity Ta(n) of Ais
the maximum number of computational steps taken by
algorithm A on any instance of size n.

The parameter n is often clear from context; we will discuss it in
more detail when we study the theory of NP-completeness.

Worst-case time gives a guaranteed upper bound on the
running time for any input.

: :
Data and Algorithm Analysis Chapter 2 — Getting Started 20/42

Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem
00000000000000800000 00000000 00000000
:

Average Case Time Complexity

Assume a probability distribution f,(/) on instances / of size n.
The time for instance /is T(/).

For algorithm A, the average case time complexity T(n) of Ais

the average number of computational steps taken by algorithm
A on any instance of size n:

T(n) = E[T(l)|sizeof lis n]
= Y ()T,

size of [is n

= &
:
Data and Algorithm Analysis

Chapter 2 — Getting Started 21/42

Administration
00

Introduction

Sorting — Insertion Sort
0000000000000 00e0000

g%rgg%a)g/lergeSOrt
Order of Growth

Traveling Salesperson Problem
00000000

Abstraction to ease analysis and focus on the important
features.

Look only at the leading term of the running time formula
» Drop lower-order terms

» Ignore the constant coefficient in the leading term
Example: an? + bn+ ¢

o
:
Data and Algorithm Analysis

o _
Chapter 2 — Getting Started

D¢

22/42

Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem
| 00 00000000000000008000 00000000 00000000

:
Computing Worst Case T(n)

» Summation — for simple algorithms

» Recurrence — for divide and conquer algorithms

o & - = DA
:

Data and Algorithm Analysis Chapter 2 — Getting Started 23/42
00

Administration

Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem
0000000000000 0000e00 00000000 00000000

INSERTION SORT — Just the for Loop

cost

C3
Cy
Cs
cy
Cs

Co
Ci0

times

n

n—1

n—1
izl
Sioli—1
Sitoti—1

n—1

3 fori=2ton

4 key = A[i]

6 j=i-1

7 while j > 0 and A[j] > key
8 Alj+1] = Alj]

9 j=j-1

10 Alj + 1] = key

To get T(n), need to multiply cost x times and sum it all up.

o = = = = 9Dac

Data and Algorithm Analysis

Chapter 2 — Getting Started 24/42

Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem
00 00 000000000000000000e0 00000000 00000000

INSERTION SORT — Computing T(n)

T(n) = C3n+c4(n—1)+06(n_1)+c7<”(”2+1)_1>

+Cg <r7(r12—1)> + Co <r1(172—1)> + Cro(n—1)
= <ﬂ+@+@) It

2 2 2
Cz C Cg
+<C3+C4+CG+E > E+c10)n
— (4 + c5 + €7 + c10)
So, T(n) is a quadratic polynomial.
=} = = E E DA

Data and Algorithm Analysis Chapter 2 — Getting Started 25/42

Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem
o 00 0000000000000000000e 00000000 00000000
:

Asymptotics of T(n)

> Asymptotics are expressed using asymptotic notation,
including ©.

» For INSERTION SORT, we have T(n) = ©(n?); more details
on asymptotic notation in Chapter 3.

» That completes the analysis of INSERTION SORT.

[m] = =
;

:
Data and Algorithm Analysis Chapter 2 — Getting Started 26/42
00

= Qe

Administration Introduction
[}

Sorting — Insertion Sort
0000000000000 0000000

Table of Contents

Sorting — MergeSort
©0000000

Traveling Salesperson Problem
00000000

Sorting — MergeSort

o = = 1PN G4
:
Data and Algorithm Analysis Chapter 2 — Getting Started 27/42
00

Administration
00

Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem
| 00000000000000000000 0®000000 00000000
Algorithms Solve Problems
Design Analyze i
Problem P » Algorithm A > Time
Complexity T
Relation Prove

Evaluate
R Correctness
/ S

Asymptotic
A Solves P Analysis
0,Q,0
Instances Solutions
RCIx S

Data and Algorithm Analysis

[m] = =
Chapter 2 — Getting Started

28/42

Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem
00000000000000000000 00800000 00000000

MergeSort — An Alternate Sorting Algorithm

MergeSort: divide and conquer algorithm
Recursive algorithm MERGE-SORT(A, p, r)
Represents instance as an array A1 : n]
Initial call MERGE-SORT(A, 1, n)

Divide and Conquer — Splits array in two and recursively
sorts each subarray

Uses a MERGE algorithm to merge two sorted subarrays
into one sorted array

» Pseudocode follows

vVvyyvyVvyy

v

: :
Data and Algorithm Analysis Chapter 2 — Getting Started 29/42

Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem
00 00 00000000000000000000 000@0000 00000000

MERGE-SORT Algorithm

MERGE-SORT(A, p,)
1 Il Alp:r] = ap,api1,...,aris an array of integers.
2 /I Returns an in-place permutation of A[p : r]
1l in non-decreasing order.
ifp<r
q=1[(p+r)/2]
MERGE-SORT(A, p, q)
MERGE-SORT(A,g+1,r)
MERGE(A,p, q,r)

NO Ok~ W

[m] = =

D¢
:

Data and Algorithm Analysis Chapter 2 — Getting Started 30/42

Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem
00000000000000000000 00008000 00000000

MERGE Algorithm

MERGE(A, p,q,r)
1 Il Alp:r] = ap,api1,...,aris an array of integers

/I with sorted subarrays A[p : gl and A[g+ 1 : r].
2 /I Returns an in-place permutation of A[p : r]

1l in non-decreasing order.
m=q-—p+1
n=r—q

let L[1: ny + 1] and R[1 : n» + 1] be new arrays
fori=1tom

L[| =Alp+i—1]
forj=1ton,

R[] = Alq +]]

© 0O NO O b~ W

[m] = - Q C
: :
Data and Algorithm Analysis Chapter 2 — Getting Started 31/42

it
9
€

Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem
0000000000000 0000000 00000@00 00000000
: :

MERGE Algorithm (Continued)

10 Lim +1] =00
11 F?[n2+1]:oo

12 i=1

13 j=1

14 fork=ptor

15 if L[i] < R[]

16 Alk] = L[i]
17 =i+

18 else Alk] = R[j]
19 Jj=J+1

o = =
: :
Data and Algorithm Analysis Chapter 2 — Getting Started 32/42

Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem
00 00 00000000000000000000 00000000 00000000

Time Complexity Analysis

» The MERGE algorithm (conquer step) takes linear time.
» The divide step takes at most linear time.

» So, the nonrecursion time at any call to MERGE-SORT is at
most ¢ n, for some positive constant ¢, .
» For a call to MERGE-SORT that does not result in

recursion, we say the time complexity is some other
positive constant c,.

[m] = =

Data and Algorithm Analysis Chapter 2 — Getting Started 33/42

Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem
| 00 0000000000000 0000000 O000000e 00000000
:
Recurrences for Time Complexity
» MergeSort recurrence:

T(n) — { iZT(n/2)+c1n n>1

n=1
» Solving recurrence by recursion tree yields

T(n) =

cinlgn+ con.
» Details on recursion trees in Chapter 4.

» Asymptotics — 7(n) = ©(nlgn)

o
:
Data and Algorithm Analysis

o _
Chapter 2 — Getting Started

D¢

34/42

Administration Introduction
[}

Sorting — Insertion Sort
0000000000000 0000000

Table of Contents

Sorting — MergeSort
00000000

Traveling Salesperson Problem
90000000

Traveling Salesperson Problem

Data and Algorithm Analysis

[m]

=

Chapter 2 — Getting Started

DA

35/42

Administration
00

Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem
| 0000000000000 0000000 00000000 O@e000000
Algorithms Solve Problems
Design Analyze i
Problem P » Algorithm A > Time
Complexity T
Relation Prove

Evaluate
R Correctness
/ S

Asymptotic
A Solves P Analysis
0,Q,0
Instances Solutions
RCIx S

Data and Algorithm Analysis

[m] = =
Chapter 2 — Getting Started

36/42

Administration Introduction Sorting — Insertion Sort

Sorting — MergeSort Traveling Salesperson Problem
00 [e]e] 0000000000000 0000000 00000000 00800000
:

Bonus Example — Traveling Salesperson Problem

TRAVELING SALESPERSON PROBLEM (TSP)

Input: Complete undirected graph G = (V, E); weight
function w: E — Z.

Output: A permutation vy, vs, ..., v, of V such that

Vn; V1) + Z VI; VI—|—1

is minimized.

[m] = =
:
Data and Algorithm Analysis

D¢

Chapter 2 — Getting Started 37/42

Administration Introduction Sorting — Insertion Sort
00

0000000000000 0O000000

Sorting — MergeSort
00000000

Traveling Salesperson Problem
00080000

Example — TSP Instance

105 110

77

Data and Algorithm Analysis

[m] = =
Chapter 2 — Getting Started

DA

38/42

Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem
00 [e]e] 0000000000000 0000000 00000000 0O000e000

Algorithm Design for TSP

Exhaustive search — an approach to the TRAVELING
SALESPERSON PROBLEM

» GivenG=(V,E)andw: E - Z

» Generate every permutation of V

» Compute weight of each

» Return permutation of minimum weight

[m] = =

D¢
:

Data and Algorithm Analysis Chapter 2 — Getting Started 39/42

Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem
0000000000000 0000000 00000000 0O0000@00

Pseudocode for TSP-EXHAUSTIVE

TSP-EXHAUSTIVE(G, w)

1 Il G=(V, E)is acomplete undirected graph.

2 /Il w: E — Zis an edge weight function.

3 /I Returns a permutation of V of minimum total weight.
4 §* =00 /I minimum weight so far

5 7™ =NIL /I permutation of weight s*

6 formr=vy,vo,...,vpa permutation of V

7 s = w(Vp, V1)+ZI 1 w(Vi, Vit1)

8 if s < s*

9 s*=s
10 Tt =7
11 return 7*

[m] = - J)QC
: :
Data and Algorithm Analysis Chapter 2 — Getting Started 40/42

Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem
00 0000000000000 0000000 00000000 00000000

Time Complexity
» for loop executed n! times

» Line 7: summation takes c{n operations for a positive
constant ¢

» Generate next permutation in constant time ¢,; see papers
by Heap and Sedgewick under Resources

> Total time:
T(n) = nl(cin+c2) +c3
» Asymptotics:
T(n) = O(n-nt)
T(n) = Q(n-nY)
T(n) = ©(n-n')

[m] = =
: :
Data and Algorithm Analysis Chapter 2 — Getting Started 41/42

Administration
00

Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem
| 0000000000000 0000000 00000000 O000000e
Algorithms Solve Problems
Design Analyze i
Problem P » Algorithm A > Time
Complexity T
Relation Prove

Evaluate
R Correctness
/ S

Asymptotic
A Solves P Analysis
0,Q,0
Instances Solutions
RCIx S

Data and Algorithm Analysis

[m] = =
Chapter 2 — Getting Started

42/42

	Administration
	Introduction
	Sorting — Insertion Sort
	Sorting — MergeSort
	Traveling Salesperson Problem

