
Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

Data and Algorithm Analysis
Chapter 2 — Getting Started

Thang Hoang

Department of Computer Science, Virginia Tech

Data and Algorithm Analysis Chapter 2 — Getting Started 1/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

Outline

Administration

Introduction

Sorting — Insertion Sort

Sorting — MergeSort

Traveling Salesperson Problem

Data and Algorithm Analysis Chapter 2 — Getting Started 2/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

Table of Contents

Administration

Introduction

Sorting — Insertion Sort

Sorting — MergeSort

Traveling Salesperson Problem

Data and Algorithm Analysis Chapter 2 — Getting Started 3/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

Administrative Details

▶ Syllabus
▶ Textbook: Introduction to Algorithms (Fourth Edition), by

Cormen, Leiserson, Rivest, and Stein
▶ Website: https://thanghoang.github.io/teaching/f23/cs4104/
▶ Canvas

▶ Website
▶ Office hours

Data and Algorithm Analysis Chapter 2 — Getting Started 4/42

https://thanghoang.github.io/teaching/f23/cs4104/


Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

Table of Contents

Administration

Introduction

Sorting — Insertion Sort

Sorting — MergeSort

Traveling Salesperson Problem

Data and Algorithm Analysis Chapter 2 — Getting Started 5/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

Overview

▶ Use frameworks for describing and analyzing algorithms.
▶ Examine two sorting algorithms: insertion sort and merge

sort.
▶ Learn how to present an algorithm with pseudocode.
▶ Understand asymptotic notation for running-time analysis.
▶ Learn “divide and conquer” technique with merge sort.

Data and Algorithm Analysis Chapter 2 — Getting Started 6/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

Table of Contents

Administration

Introduction

Sorting — Insertion Sort

Sorting — MergeSort

Traveling Salesperson Problem

Data and Algorithm Analysis Chapter 2 — Getting Started 7/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

Algorithms Solve Problems

A Solves P

Problem P
Design Analyze Time

Complexity T

R

I S

Algorithm A

Prove Evaluate

Correctness Asymptotic
Analysis
O, Ω, Θ

Relation

R ⊆ I × S

Instances Solutions

Data and Algorithm Analysis Chapter 2 — Getting Started 8/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

Example — Sorting as a Formal Problem

SORTING

Input: Sequence a1,a2, . . . ,an of integers.
Output: A permutation b1,b2, . . . ,bn of a1,a2, . . . ,an
such that

b1 ≤ b2 ≤ · · · ≤ bn−1 ≤ bn.

▶ For convenience of discussion, we often assume that the
integers in the instance are distinct, though that is not
strictly necessary.

Data and Algorithm Analysis Chapter 2 — Getting Started 9/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

Example — Sorting
An input of SORTING as an array A[1 : n]:

A[8]

57 23 31 100 4 18 44 92

A[1] A[2] A[3] A[4] A[5] A[6] A[7]

The output of SORTING as an array B[1 : n]:

18

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

4 5744 92 1003123

We will now design algorithms to solve SORTING.

Data and Algorithm Analysis Chapter 2 — Getting Started 10/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

Insertion Sort — A Simple Sorting Algorithm

Main idea is to build up a sorted array in place as follows:
▶ Proceed through A[1 : n] iteratively from left to right.
▶ Always maintain a sorted subarray on the left of A[i].
▶ At A[i], find the right place to insert A[i] into the sorted

subarray to its left.
▶ In the process, move larger integers to the right.

Data and Algorithm Analysis Chapter 2 — Getting Started 11/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

Illustrating the Idea Behind Insertion Sort

A[i] = key is the next integer to be inserted into the sorted
subarray to its left.

Sorted Subarray A[1 : i − 1]

≤ key

A[j + 1] . . . A[i − 1]

Unexamined

A[i]

key

A[i + 1] . . . A[n]

> key

A[1] . . . A[j]

We now express the INSERTION-SORT algorithm in
pseudocode.

Data and Algorithm Analysis Chapter 2 — Getting Started 12/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

CLRS Pseudocode

▶ Emphasis on human readability and comprehension
▶ Indentation for logical structure
▶ Keywords: if/else/elseif, while, for,

repeat/until, return
▶ Assignment: =
▶ Comment: //
▶ Lines numbered for reference purposes
▶ Flexible semantics

Data and Algorithm Analysis Chapter 2 — Getting Started 13/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

Pseudocode for INSERTION SORT

INSERTION-SORT(A,n)
1 // A[1 : n] is an array of integers.
2 // Returns a permutation of A in nondecreasing order.
3 for i = 2 to n
4 key = A[i]
5 // Insert A[i] into the sorted subarray A[1 : i − 1].
6 j = i − 1
7 while j > 0 and A[j] > key
8 A[j + 1] = A[j]
9 j = j − 1
10 A[j + 1] = key
11 return A

Data and Algorithm Analysis Chapter 2 — Getting Started 14/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

Algorithm Design Paradigms

▶ Incremental — INSERTION SORT

▶ Divide and conquer — MERGESORT — recursive
▶ Dynamic programming — Chapter 14
▶ Greedy — Chapter 15
▶ Randomized algorithms — Chapters 5 and 7
▶ Exhaustive search — an approach, later, for the

TRAVELING SALESPERSON PROBLEM

Data and Algorithm Analysis Chapter 2 — Getting Started 15/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

Insertion Sort — Correctness

Loop invariant: At the start of iteration i of the for loop (lines
3–10), the subarray A[1 : i − 1] is a sorted version of the
original subarray A[1 : i − 1].
▶ Initialization: True before i = 2.
▶ Maintenance: True after loop body for i .
▶ Termination: Loop terminates with the array sorted when

i = n + 1.
We conclude that the for loop actually sorts A.

Data and Algorithm Analysis Chapter 2 — Getting Started 16/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

INSERTION SORT — Verify Loop Invariant

INSERTION-SORT(A,n)
1 // A[1 : n] is an array of integers.
2 // Returns a permutation of A in nondecreasing order.
3 for i = 2 to n // A[1 : i − 1] is already sorted
4 key = A[i]
5 // Insert A[i] into the sorted subarray A[1 : i − 1].
6 j = i − 1
7 while j > 0 and A[j] > key
8 A[j + 1] = A[j]
9 j = j − 1
10 A[j + 1] = key
11 return A

Data and Algorithm Analysis Chapter 2 — Getting Started 17/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

Insertion Sort — Time Complexity Analysis

The final task is analyzing the time complexity of
INSERTION-SORT.

This takes some discussion on analysis of algorithms, which is
next.

Data and Algorithm Analysis Chapter 2 — Getting Started 18/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

Analysis of Algorithms

▶ Why analyze?
▶ Why not just code the algorithm, run it, and time it?
▶ Analysis tells you how long the code takes to run on

different settings, inputs, or programming language.
▶ Random-Access Machine (RAM) model
▶ What to analyze in an algorithm?

▶ Time complexity
▶ Worst case
▶ Average case

▶ Space complexity

Data and Algorithm Analysis Chapter 2 — Getting Started 19/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

Worst Case Time Complexity

For algorithm A, the worst case time complexity TA(n) of A is
the maximum number of computational steps taken by
algorithm A on any instance of size n.

The parameter n is often clear from context; we will discuss it in
more detail when we study the theory of NP-completeness.

Worst-case time gives a guaranteed upper bound on the
running time for any input.

Data and Algorithm Analysis Chapter 2 — Getting Started 20/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

Average Case Time Complexity

Assume a probability distribution fn(I) on instances I of size n.

The time for instance I is T (I).

For algorithm A, the average case time complexity T (n) of A is
the average number of computational steps taken by algorithm
A on any instance of size n:

T (n) = E [T (I) | size of I is n]

=
∑

size of I is n

fn(I)T (I).

Data and Algorithm Analysis Chapter 2 — Getting Started 21/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

Order of Growth

Abstraction to ease analysis and focus on the important
features.

Look only at the leading term of the running time formula
▶ Drop lower-order terms
▶ Ignore the constant coefficient in the leading term

Example: an2 + bn + c

Data and Algorithm Analysis Chapter 2 — Getting Started 22/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

Computing Worst Case T (n)

▶ Summation — for simple algorithms
▶ Recurrence — for divide and conquer algorithms

Data and Algorithm Analysis Chapter 2 — Getting Started 23/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

INSERTION SORT — Just the for Loop

cost times
c3 n 3 for i = 2 to n
c4 n − 1 4 key = A[i]
c6 n − 1 6 j = i − 1
c7

∑n
i=2 ti 7 while j > 0 and A[j] > key

c8
∑n

i=2 ti − 1 8 A[j + 1] = A[j]
c9

∑n
i=2 ti − 1 9 j = j − 1

c10 n − 1 10 A[j + 1] = key

To get T (n), need to multiply cost × times and sum it all up.

Data and Algorithm Analysis Chapter 2 — Getting Started 24/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

INSERTION SORT — Computing T (n)

T (n) = c3n + c4(n − 1) + c6(n − 1) + c7

(
n(n + 1)

2
− 1

)
+c8

(
n(n − 1)

2

)
+ c9

(
n(n − 1)

2

)
+ c10(n − 1)

=
(c7

2
+

c8

2
+

c9

2

)
n2

+
(

c3 + c4 + c6 +
c7

2
− c8

2
− c9

2
+ c10

)
n

− (c4 + c6 + c7 + c10)

So, T (n) is a quadratic polynomial.

Data and Algorithm Analysis Chapter 2 — Getting Started 25/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

Asymptotics of T (n)

▶ Asymptotics are expressed using asymptotic notation,
including Θ.

▶ For INSERTION SORT, we have T (n) = Θ(n2); more details
on asymptotic notation in Chapter 3.

▶ That completes the analysis of INSERTION SORT.

Data and Algorithm Analysis Chapter 2 — Getting Started 26/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

Table of Contents

Administration

Introduction

Sorting — Insertion Sort

Sorting — MergeSort

Traveling Salesperson Problem

Data and Algorithm Analysis Chapter 2 — Getting Started 27/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

Algorithms Solve Problems

A Solves P

Problem P
Design Analyze Time

Complexity T

R

I S

Algorithm A

Prove Evaluate

Correctness Asymptotic
Analysis
O, Ω, Θ

Relation

R ⊆ I × S

Instances Solutions

Data and Algorithm Analysis Chapter 2 — Getting Started 28/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

MergeSort — An Alternate Sorting Algorithm

▶ MergeSort: divide and conquer algorithm
▶ Recursive algorithm MERGE-SORT(A,p, r)
▶ Represents instance as an array A[1 : n]
▶ Initial call MERGE-SORT(A,1,n)
▶ Divide and Conquer — Splits array in two and recursively

sorts each subarray
▶ Uses a MERGE algorithm to merge two sorted subarrays

into one sorted array
▶ Pseudocode follows

Data and Algorithm Analysis Chapter 2 — Getting Started 29/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

MERGE-SORT Algorithm

MERGE-SORT(A,p, r)
1 // A[p : r ] = ap,ap+1, . . . ,ar is an array of integers.
2 // Returns an in-place permutation of A[p : r ]

// in non-decreasing order.
3 if p < r
4 q = ⌊(p + r)/2⌋
5 MERGE-SORT(A,p,q)
6 MERGE-SORT(A,q + 1, r)
7 MERGE(A,p,q, r)

Data and Algorithm Analysis Chapter 2 — Getting Started 30/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

MERGE Algorithm

MERGE(A,p,q, r)
1 // A[p : r ] = ap,ap+1, . . . ,ar is an array of integers

// with sorted subarrays A[p : q] and A[q + 1 : r ].
2 // Returns an in-place permutation of A[p : r ]

// in non-decreasing order.
3 n1 = q − p + 1
4 n2 = r − q
5 let L[1 : n1 + 1] and R[1 : n2 + 1] be new arrays
6 for i = 1 to n1
7 L[i] = A[p + i − 1]
8 for j = 1 to n2
9 R[j] = A[q + j]

Data and Algorithm Analysis Chapter 2 — Getting Started 31/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

MERGE Algorithm (Continued)

10 L[n1 + 1] = ∞
11 R[n2 + 1] = ∞
12 i = 1
13 j = 1
14 for k = p to r
15 if L[i] ≤ R[j]
16 A[k ] = L[i]
17 i = i + 1
18 else A[k ] = R[j]
19 j = j + 1

Data and Algorithm Analysis Chapter 2 — Getting Started 32/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

Time Complexity Analysis

▶ The MERGE algorithm (conquer step) takes linear time.
▶ The divide step takes at most linear time.
▶ So, the nonrecursion time at any call to MERGE-SORT is at

most c1n, for some positive constant c1.
▶ For a call to MERGE-SORT that does not result in

recursion, we say the time complexity is some other
positive constant c2.

Data and Algorithm Analysis Chapter 2 — Getting Started 33/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

Recurrences for Time Complexity

▶ MergeSort recurrence:

T (n) =

{
2T (n/2) + c1n n > 1
c2 n = 1

▶ Solving recurrence by recursion tree yields

T (n) = c1n lg n + c2n.

▶ Details on recursion trees in Chapter 4.
▶ Asymptotics — T (n) = Θ(n lg n)

Data and Algorithm Analysis Chapter 2 — Getting Started 34/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

Table of Contents

Administration

Introduction

Sorting — Insertion Sort

Sorting — MergeSort

Traveling Salesperson Problem

Data and Algorithm Analysis Chapter 2 — Getting Started 35/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

Algorithms Solve Problems

A Solves P

Problem P
Design Analyze Time

Complexity T

R

I S

Algorithm A

Prove Evaluate

Correctness Asymptotic
Analysis
O, Ω, Θ

Relation

R ⊆ I × S

Instances Solutions

Data and Algorithm Analysis Chapter 2 — Getting Started 36/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

Bonus Example — Traveling Salesperson Problem

TRAVELING SALESPERSON PROBLEM (TSP)
Input: Complete undirected graph G = (V ,E); weight
function w : E → Z.
Output: A permutation v1, v2, . . . , vn of V such that

w(vn, v1) +
n−1∑
i=1

w(vi , vi+1)

is minimized.

Data and Algorithm Analysis Chapter 2 — Getting Started 37/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

Example — TSP Instance

101

D

C

B

A

77

105

42
89

110

Data and Algorithm Analysis Chapter 2 — Getting Started 38/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

Algorithm Design for TSP

Exhaustive search — an approach to the TRAVELING

SALESPERSON PROBLEM

▶ Given G = (V ,E) and w : E → Z
▶ Generate every permutation of V
▶ Compute weight of each
▶ Return permutation of minimum weight

Data and Algorithm Analysis Chapter 2 — Getting Started 39/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

Pseudocode for TSP-EXHAUSTIVE

TSP-EXHAUSTIVE(G,w)
1 // G = (V ,E) is a complete undirected graph.
2 // w : E → Z is an edge weight function.
3 // Returns a permutation of V of minimum total weight.
4 s∗ = ∞ // minimum weight so far
5 π∗ = NIL // permutation of weight s∗

6 for π = v1, v2, . . . , vn a permutation of V
7 s = w(vn, v1) +

∑n−1
i=1 w(vi , vi+1)

8 if s < s∗

9 s∗ = s
10 π∗ = π
11 return π∗

Data and Algorithm Analysis Chapter 2 — Getting Started 40/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

Time Complexity
▶ for loop executed n! times
▶ Line 7: summation takes c1n operations for a positive

constant c1

▶ Generate next permutation in constant time c2; see papers
by Heap and Sedgewick under Resources

▶ Total time:
T (n) = n!(c1n + c2) + c3

▶ Asymptotics:
T (n) = O(n · n!)
T (n) = Ω(n · n!)
T (n) = Θ(n · n!)

Data and Algorithm Analysis Chapter 2 — Getting Started 41/42



Administration Introduction Sorting — Insertion Sort Sorting — MergeSort Traveling Salesperson Problem

Algorithms Solve Problems

A Solves P

Problem P
Design Analyze Time

Complexity T

R

I S

Algorithm A

Prove Evaluate

Correctness Asymptotic
Analysis
O, Ω, Θ

Relation

R ⊆ I × S

Instances Solutions

Data and Algorithm Analysis Chapter 2 — Getting Started 42/42


	Administration
	Introduction
	Sorting — Insertion Sort
	Sorting — MergeSort
	Traveling Salesperson Problem

